Blood flow augmentation by intrinsic venular contraction in vivo.

نویسندگان

  • Ranjeet M Dongaonkar
  • Christopher M Quick
  • Jonathan C Vo
  • Joshua K Meisner
  • Glen A Laine
  • Michael J Davis
  • Randolph H Stewart
چکیده

Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System

This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI) as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats w...

متن کامل

Prolonged tissue PO2 reduction after contraction in spinotrapezius muscle of spontaneously hypertensive rats.

We tested the hypothesis that a deficit in oxygen extraction or an increase in oxygen demand after skeletal muscle contraction leads to delayed recovery of tissue oxygen tension (Po(2)) in the skeletal muscle of hypertensive rats compared with normotensive rats. Blood flow and Po(2) recovery at various sites in the spinotrapezius muscle of spontaneously hypertensive rats (SHRs) were evaluated a...

متن کامل

Rheological effects of red blood cell aggregation in the venous network: a review of recent studies.

It has long been recognized that understanding the rheological properties of blood is essential to a full understanding of the function of the circulatory system. Given the difficulty of obtaining carefully controlled measurements in vivo, most of our current concepts of the flow behavior of blood in vivo are based on its properties in vitro. Studies of blood rheology in rotational and tube vis...

متن کامل

Venomotion modulates lymphatic pumping in the bat wing.

In skin, it is believed that lymph must be pumped by intrinsic contraction of lymphatic muscle, since investigators have not considered that cyclical dilation of venules could compress adjacent lymphatic microvessels. Because lymphatic vessels are sensitive to stretch, we hypothesized that venomotion not only can cause extrinsic pumping of lymph in nearby lymphatic vessels, but also can stimula...

متن کامل

Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions.

The occurrence of rosetting of Plasmodium falciparum-infected human red blood cells (IRBC) with uninfected red blood cells (RBC) and its potential pathophysiologic consequences were investigated under flow conditions using the perfused rat mesocecum vasculature. Perfusion experiments were performed using two knobby (K+) lines of P falciparum, ie, rosetting positive (K+R+) and rosetting negative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 302 12  شماره 

صفحات  -

تاریخ انتشار 2012